Evidences for a role of glutathione peroxidase 4 (GPx4) in methylmercury induced neurotoxicity in vivo.

نویسندگان

  • A P P Zemolin
  • D F Meinerz
  • M T de Paula
  • D O C Mariano
  • J B T Rocha
  • A B Pereira
  • T Posser
  • J L Franco
چکیده

We evaluated the activity and expression of antioxidant enzymes in the cerebellum and cortex of Swiss adult male mice exposed to methylmercury (MeHg) in drinking water (40mg/L) during 21 days. The activity of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and thioredoxin reductase (TrxR) were determined spectrophotometrically. The expression (protein levels) of GPx1 and GPx4 isoforms, TrxR1 as well as heat shock protein 70 (HSP70) were evaluated using specific antibodies and normalized by actin levels. The exposure of mice to MeHg caused a significant impairment in locomotors performance in the open field test (crossings and rearing). This result was followed by a significant reduction of GPx and TrxR activities in the cerebellum and cortex when compared to untreated animals. We also observed a substantial decrease in GPx1, GPx4 and TrxR1 protein levels in the cerebellum, while in the cerebral cortex, only GPx4 and TrxR1 were decreased after MeHg treatment. The activities of the antioxidant enzymes GR, GST, CAT and SOD were increased in the cerebellum after MeHg administration to mice. In contrast, only CAT was increased in the cerebral cortex of MeHg-treated animals. The expression of HSP70 was up-regulated only in the cerebellum where MeHg-exposed mice showed a significant increase in the immunocontent of HSP70 when compared to controls. This is the first report showing a role for GPx4 in the neurotoxicity induced by MeHg in vivo. In addition, our data indicates that the selenoproteins GPx and TrxR as main targets during MeHg exposure, which may be considered in biomarker studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis.

Glutathione peroxidase 4 (Gpx4) is uniquely involved in the detoxification of oxidative damage to membrane lipids. Our previous studies showed that Gpx4 is essential for mouse survival and that Gpx4 deficiency makes cells vulnerable to oxidative injury. In the present study, we generated two lines of transgenic mice overexpressing Gpx4 (Tg(GPX4) mice) using a genomic clone containing the human ...

متن کامل

Protective Role of Glutathione Peroxidase 4 in Laser-Induced Choroidal Neovascularization in Mice

PURPOSE To evaluate the influence of glutathione peroxidase 4 (GPx4) expression in retinal pigment epithelium (RPE)/choroid tissue using a mouse model of laser-induced choroidal neovascularization (CNV). METHODS In this study, GPx4+/-, GPx4+/+, and GPx4-overexpressing transgenic mice were created for comparison. The mRNA and protein expression of vascular endothelial growth factor (VEGF)-A in...

متن کامل

Role of Glutathione Peroxidase 4 in Glutamate-Induced Oxytosis in the Retina

PURPOSE The purpose of the present study was to investigate the role of glutathione peroxidase 4 (GPx4) in glutamate-induced oxytosis in the retina. METHODS For in vitro studies, an immortalized rat retinal precursor cell line R28 was used. Cells were transfected with siRNA specifically silencing GPx4 or with scrambled control siRNA. Lipid peroxidation was evaluated by 4-hydroxy-2-nonenal (4-...

متن کامل

Glutathione peroxidase 4 plays an important role in oxidative homeostasis and wound repair in corneal epithelial cells

Oxidative stress is involved in the pathologies of corneal epithelial cells. However, the importance of specific antioxidant enzymes in corneal epithelial cells is not fully understood. The purpose of this study is to elucidate the role of glutathione peroxidase 4 (GPx4) in corneal epithelial cells. For in vitro experiments, an immortalized human corneal epithelial cell line was used. Cytotoxic...

متن کامل

Combined deficiency in glutathione peroxidase 4 and vitamin E causes multiorgan thrombus formation and early death in mice.

RATIONALE Growing evidence indicates that oxidative stress contributes markedly to endothelial dysfunction. The selenoenzyme glutathione peroxidase 4 (Gpx4) is an intracellular antioxidant enzyme important for the protection of membranes by its unique activity to reduce complex hydroperoxides in membrane bilayers and lipoprotein particles. Yet a role of Gpx4 in endothelial cell function has rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicology

دوره 302 1  شماره 

صفحات  -

تاریخ انتشار 2012